Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types.
نویسندگان
چکیده
The phenotype of endothelial cells (ECs) is specific to the vascular bed from which they originate. To examine how mechanical forces alter the phenotype of different ECs, we compared the effects of cyclic strain and motion control on reactive oxygen species (ROS) production and metabolism and cell adhesion molecule expression in human umbilical vein endothelial cells (HUVEC) vs. human aortic endothelial cells (HAEC). HUVEC and HAEC were subjected to cyclic strain (10% or 20%, 1 Hz), to a motion control that simulated fluid agitation over the cells without strain, or to static conditions for 24 h. We measured H(2)O(2) production with dichlorodihydrofluorescein acetate and superoxide with dihydroethidium fluorescence changes; superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities spectrophotometrically; and vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 protein expression with Western blot analyses. HUVEC under cyclic strain showed 1) higher intracellular H(2)O(2) levels, 2) increased SOD, catalase, and GPx activities, and 3) greater VCAM-1 and ICAM-1 protein expression, compared with motion control or static conditions. However, in HAEC, motion control induced higher levels of ROS, enzyme activities associated with ROS defense, and VCAM-1 and ICAM-1 expression than cyclic strain. The opposite responses obtained with these two human EC types may reflect their vessels of origin, in that HAEC are subjected to higher cyclic strain deformations in vivo than HUVEC.
منابع مشابه
Endothelial cell mechanosensitivity. Focus on "Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types".
ENDOTHELIAL CELLS THAT LINE the inner wall of blood vessels secrete many vasoactive factors including nitric oxide (vasorelaxant) and endothelin-1 (vasoconstrictor) that contribute to the regulation of vascular tone and blood pressure (21). Endothelial cells respond to various humoral agents, including inflammatory mediators, such as interleukin-1 and prostaglandins, to regulate the permeabilit...
متن کاملcDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control.
Microarrays were utilized to determine gene expression of vascular endothelial cells (ECs) subjected to mechanical stretch for insight into the role of strain in vascular pathophysiology. Over 4,000 genes were screened for expression changes resulting from cyclic strain (10%, 1 Hz) of human umbilical vein ECs for 6 and 24 h. Comparison of t-statistics and adjusted P values identified genes havi...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملEffects of Using a Multi-Strain Probiotic on Performance, Immune Responses and Cecal Microflora Composition in Broiler Chickens Reared Under Cyclic Heat Stress Condition
This experiment was conducted to examine the effect of multi-strain probiotic (Primalac) on performance, immune responses and cecal microflora in broiler chickens under cyclic heat stress condition. A total of 96 one-d-old mixed sex broiler chicks (Ross 308) were weighed and randomly allocated to two treatment groups, each with 4 replicate pens of 12 chicks. The dietary treatments were basal di...
متن کاملPhosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2.
Cyclic nucleotide phosphodiesterases (PDEs) control the levels of the second messengers cAMP and cGMP in many cell types including endothelial cells. Although PDE2 has the unique property to be activated by cGMP but to hydrolyze cAMP, its role in endothelial function is only poorly understood. Reactive oxygen species (ROS) have been recognized as signaling molecules controlling many endothelial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007